原子物理课程教学大纲

课程基本信息(Course Information)							
课程代码 (Course Code)	PH244	学时 (Credit Hours)	48		学分 edits)	3	
课程名称	(中文)原子物理						
(Course Name)	(英文)Atomic Physics						
课程性质	专业基础必修课程						
(Course Type)	, — <u>— — — — — — — — — — — — — — — — — —</u>						
授课对象	物理学专业、应用物理学专业大学二年级本科生						
(Audience)	70年1《五、八月70年1《五八丁一丁次作作工						
授课语言							
(Language of	中文						
Instruction)							
开课院系	物理与天文学院						
(School)							
先修课程	高等数学、力学、热学、电磁学、光学						
(Prerequisite)							
授课教师 (Teacher)	董兵		课程网址 (Course Webpage)		(选填)		
(leacher)	大 迎 担 的 子 词	毎日 長 和 仁 久 巳					
	本课程的主要目标和任务是:以原子结构为中心,以实验事实为线索,使学生能够熟练掌握原子物理学的基本原理和基本规律,掌握原子的结构、运动规律和研						
 *课程简介	· 努然练事健康了物理子的基本原理和基本就律, 事健康了的结构、运动就律和研究方法, 培养学生分析问题和解决问题的能力, 并循序渐进讲授量子力学的基本						
(Description)	概念和理论方法。要求学生熟悉量子理论的物理图像,掌握基本概念,能应用相应的数学方法求解简单的量子体系(如一维问题),并为以后继续学习量子力学						
(- 333							
	课程打下坚实的基础。						
	This course provides a review of previous stages in the development of quantum						
	theory, which includes blackbody radiation, photoelectric effect, Compton scattering,						
*课程简介 (Description)	atomic structure, the Bohr model of atom, atom in magnetic field, Stern Gerlach						
	experiment, spin hypothesis, addition of orbital and spin angular moments, atom						
	with multi-electrons, Pauli exclusive principle, and Periodic table. The course also						
	covers basic concepts and topics in quantum mechanics, such as wave-particle duality,						
	uncertainty principle and Schrödinger's equation, incorporating elementary						
	applications, such as one-dimensional potential problems, and three-dimensional						
	hydrogen atom.						
课程教学大纲(co	urse syllabus						

1. 让学生了解古典物理的困难,旧量子论的建立及其不足 *学习目标 2. 学习量子力学的基本原理及其基本数学方法 (Learning Outcomes) 3. 学习量子力学的简单应用——一维及氢原子问题 教学内容 学时 教学方式 作业及要求 基本要求 考查方式 绪论 讲授 无 了解原子物 理学的研究 对象、发展 简史及课程 的特点、学 习方法、要 求。 第一章 讲授+讨 独立完成 掌握原子的 4 作业及期 原子的位 论 静态性质; 中、期末考 形 了解电子的 试 发现、α粒 子散射实验 等实验事 实; 掌握库 仑散射公式 *教学内容、进度 和卢瑟福散 射公式的推 安排及要求 导、原子核 (Class Schedule 大小的估计 和原子的核 & Requirements) 式结构。 讲授+讨 独立完成 掌握黑体辐 同上 第二章 论 射及其公式 原子的量 推导, 普朗 子态 克量子化的 引入;掌握 光电效应及 其解释,爱 因斯坦光量 子公式;掌 握康普顿散 射实验现象 及其理论解 释, 德布罗 意波粒二象 性公式;掌

 	1	T		T.	
				握氢原子及	
				类氢离子光	
				谱规律公	
				式;掌握玻	
				尔理论要	
				点;理解夫	
				兰克—赫兹	
				实验原理、	
				方法及结	
				论。	
第三章	15	讲授+讨	独立完成	了解量子力	同上
		论		学的基本概	
量子力学				念和对微观	
导论				粒子体系描	
				述的理论出	
				发点与方	
				法,理解量	
				子化是薛定	
				谔方程和波	
				函数物理意	
				义的自然结	
				果。要求薛	
				定谔方程的	
				基本应用:	
				无限深势阱	
				及电子隧道	
				效应。	
第四章	6	讲授+讨	独立完成	掌握碱金属	同上
原子的精	Ü	论	321==36/94	原子能级和	1 4-2-3
细结构和		,,		光谱的一般	
电子自旋				特性;掌握	
				电子自旋概	
				念与自旋量	
				子数的意	
				义;掌握角	
				动量耦合方	
				法,理解电	
				子自旋与轨	
				道运动的相	
				互作用;掌	
				五15元; 事 握碱金属原	
				子光谱精细	
				结构形成的	
				物理本质;	
				70/54 平灰;	

			-			
					掌握单电子	
					原子态符号	
					描述。掌握	
					原子磁矩概	
					念和有关计	
					算;掌握原	
					子在外磁场	
					中附加能量	
					公式,并解	
					释原子能级	
					在外磁场中	
					分裂现象;	
					正确解释史	
					特恩——盖	
					拉赫实验及	
					塞曼效应。	
		0	2升+22 - 2十	独立宣击		
	第五章	9	讲授+讨 论	独立完成	熟练掌握两	同上
	多电子原		K		个价电子的	
					耦合方法、	
	子				氦和碱土金	
					属原子态,	
					并能熟练画	
					出相应的能	
					级跃迁简	
					图;掌握泡	
					利不相容原	
					理和辐射跃	
					迁的选择定	
					则;了解多	
					电子原子光	
					谱的一般规	
					律;了解元	
					素周期表的	
					结构及物理	
					解释; 理解	
					并掌握电子	
					填充原子壳	
					层的原则;	
					能正确写出	
					原子基态的	
					电子组态,	
					并求出其基	
					态的原子态	
					符号。	
1	-		i.		1	<u> </u>

*考核方式 (Grading)	考试成绩由三部分构成:平时作业(20%)、中期笔试(30%)、期末笔试(50%)。
*教材或参考资料 (Textbooks & Other Materials)	1、推荐教材: 杨福家,原子物理学,北京:高等教育出版社,2008年,第四版。 2、主要参考书: (1)原子物理学,褚圣麟,北京:高等教育出版社,1979年,第一版,2008年,第35次印刷。(本书在1987年国家教育委员会举办的全国优秀教材评选中获国家教委一等奖。)。 (2)新概念物理教程:量子物理(第二版),赵凯华,罗蔚茵编著,高等教出版社,2008年。 (3)量子力学(卷 I),曾谨言著.第五版.科学出版社。
其它 (More)	
备注 (Notes)	考核方式和各部分所占比例根据教学实践可能有所调整。